
1

ParaWise/CAPO Parallelization
Environment

Henry Jin
hjin@nas.nasa.gov

NASA Advanced Supercomputing (NAS) Division
NASA Ames Research Center

June 13, 2005

2

Key Ideas

•  Interactive environment for semi-automatic
parallelization of Fortran application codes

•  Generated codes in recognizable form by user

INPUT

Fortran
code

ParaWise/CAPO

Transformation
Parallel code

OUTPUT

Fortran +
OpenMP
directives

3

ParaWise and CAPO

•  ParaWise
–  Semi-automatic, developed by Parallel Software Products
–  Accurate symbolic, value based, interprocedural data dependence

analysis
–  Domain decomposition for generating message-passing codes
–  A set of browsers for user to interact with the parallelization process

•  CAPO
–  A module for generating OpenMP parallel codes, developed at NASA

Ames
–  Exploits loop-level parallelism
–  Directives browsers to guide the parallelization process
–  Currently integrated with ParaWise

4

Interactive Parallelization Process

Source

Dependence
Analysis

Directive
Analysis

OpenMP Code
Generation

Parallel Code

Browsers

THREADPRIVATE
Analysis

Variable Scoping
Analysis

Code
Transformation

Directive
Insertion

Loop
Analysis

Parallel Region
Creation

Region Merging
And Migrating

NOWAIT
Optimization

5

Generation of OpenMP Code

•  Identify parallel loops, including loops for setting up possible
pipeline

•  Construct parallel regions from parallel loops

•  Merge consecutive parallel regions and migrate parallel regions
as high as possible in the call path

•  Perform NOWAIT optimization for consecutive parallel loops
inside a parallel region

•  Automatically identify and define variable scopes, such as
SHARED, PRIVATE and REDUCTION

•  Detect and produce THREADPRIVATE directives for common
blocks

6

Code Generation Process

 do K=
 ...
 end do
 call subwork
 ...

 subroutine subwork
 do J=
 ...
 end do
 do J=
 ...
 end do
 return
 end

serial code

 do K=
 ...
 end do

 call subwork

 ...

 subroutine subwork

 do J=
 ...
 end do

 do J=
 ...
 end do

 return
 end

!$OMP PARALLEL DO

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

!$OMP END PARALLEL DO
!$OMP PARALLEL DO

!$OMP END PARALLEL DO

identify parallel loops
create parallel regions

7

Code Generation Process (cont.)

 do K=
 ...
 end do

 call subwork

 ...

 subroutine subwork

 do J=
 ...
 end do

 do J=
 ...
 end do

 return
 end

!$OMP PARALLEL DO

!$OMP END PARALLEL DO

!$OMP PARALLEL
!$OMP DO

!$OMP END DO
!$OMP DO

!$OMP END DO
!$OMP END PARALLEL

 do K=
 ...
 end do

 call subwork

 ...

 subroutine subwork

 do J=
 ...
 end do

 do J=
 ...
 end do

 return
 end

!$OMP PARALLEL
!$OMP DO

!$OMP END DO

!$OMP END PARALLEL

!$OMP DO

!$OMP END DO
!$OMP DO

!$OMP END DO

NOWAIT

NOWAIT

merge parallel regions
migrate parallel regions
generate NOWAIT

8

Automatic Code Transformation

•  Privatization of common block variables
–  if cannot be handled with THREADPRIVATE

•  Routine duplication
–  to resolve conflicts of usage

•  Reduction on an array variable
–  update local variable in parallel, then the shared array variable in a

critical region

•  F90 array syntax to loop nest
–  so that OMP DO can be applied

•  Loop interchange
–  for better cache utilization

9

Routine Duplication

•  Call inside a parallel region,
but not inside a parallel DO

 call sub
 do K=
 ...
 end do
 ...
 call sub

 subroutine sub
 do J=
 ...
 end do

!$OMP PARALLEL
 call sub
!$OMP DO
 do K=
 ...
 end do
!$OMP END PARALLEL
 ...
 call sub

 subroutine sub
!$OMP PARALLEL DO
 do J=
 ...
 end do

!$OMP PARALLEL
 call cap_sub
!$OMP DO
 do K=
 ...
 end do
!$OMP END PARALLEL
 ...
 call sub

 subroutine sub
!$OMP PARALLEL DO
 do J=
 ...
 end do

 subroutine cap_sub
!$OMP DO
 do J=
 ...
 end do

inside parallel region

outside parallel region

10

Identifying Parallel Loops - The Key Issue

•  Code developers want to
–  find all the loops that can be parallelized
–  find all those that look ‘serial’
–  find which of the ‘serial’ don’t affect parallel performance and

which are critical
–  fix the code so that the critical ‘serial’ loops can be parallelized

•  CAPO enables this function by
–  categorizing different loop types
–  solving through user interaction
–  generating parallel code with directives automatically

11

Directives Browser Window

loop
type Why

12

Loop Types Identified with Directives Browser
Totally Serial

 Problem : Potentially severe
–  Serial due to loop-carried true dependence present and/or,
–  Serial due to loop-carried pseudo (memory re-use) dependence

by a non-privatizable variable
–  Not contained in, or containing ANY parallel loops - entirely serial
–  Sequential execution can prevent effective parallel performance

 Possible Solutions :
–  True dependence may have been assumed, may be proven to no

longer exist if user knowledge is added.
–  Investigate loop-carried pseudo dependence - add user

knowledge to prove non-existence.
–  Investigate privatization preventing true dependences from/to

outside of loop - add user knowledge to prove non-existence

Browser shows serializing dependences (textually and graphically)

13

Loop Types Identified with Directives Browser (cont.)

Covered Serial
 Problem: May be important

–  Also a serial loop, but contains or is contained in a parallel loop so
some parallelism will be exploited.

–  If contains parallel loops, parallel performance can be enhanced by
parallelism at this higher level.

 Possible solutions :
–  Can be treated in a similar manner to the “serial” loop type described

previously.

 Browser shows serializing dependences and surrounding parallel loop(s)
and/or contained parallel loops

14

Loop Types Identified with Directives Browser (cont.)

Chosen Parallel :
–  Parallel loop that is not nested within other parallel loops
–  Current Loop level at which parallel DO directive is inserted
–  Includes loops identified with reduction operations
–  Includes loops identified with software pipelines

Not Chosen:
–  Parallel loop not chosen due to the selection of other parallel loops

from the “Chosen Parallel” category above or due to I/O statements
–  User may enforce parallelization if needed

15

The Why Directives Window

•  Reason and hints for a selected loop
•  List of variables and dependence types
•  Tools for removing

dependences

16

Investigate Why a Dependence Is Defined

17

Further Code Optimization

•  Choose outer-most loops for better granularity

•  Prune data dependences when
–  unknown information involved (e.g. input parameters)
–  code too complicated (e.g. FFT)

•  Require user knowledge

•  Use dialog boxes in the WhyDirectives window
–  remove false data dependences
–  thus parallelize a loop

18

Remove Data Dependences
 integer indexptr(maxcells)
 read*,indexptr
 do i=1,ncells
 S1 u(indexptr(i)) = . . .
 S2 . . . = u(indexptr(i)) + . . .
 enddo
 S3 print*,(u(j),j=1,ncells)

analysis
•  i loop serial due to loop carried pseudo dependences of u, S1→ S1 (output), S2 →

S1 (anti), Loop output S1 → S3 also u is not PRIVATE

user inspection
•  Examine Loop output dependence and determine it is correct therefore u cannot

be PRIVATE

possible solution
•  If contents of indexptr are all unique then we can safely remove the loop

carried anti and output dependencies for the array u allowing u to stay SHARED
and the loop to execute in parallel

19

Remove Data Dependences (cont.)
 S1 read*,(work(k),k=1,10)
 do i=1,10
 do j=1,n
 S2 work(j)=j
 enddo
 S3 b(i)=b(i)+work(2)
 enddo
analysis
•  i loop serial due to loop carried pseudo dependencies of work, S2 → S2 (output), S3

→ S2 (anti)
•  Loop input dependence of work, S1 → S3 (true) exists so work is not PRIVATE

user inspection
•  Examine in Why dependence window of dependence graph browser
•  Determine that the pseudo dependencies are correct (work is re-used)
•  Loop input dependence non-existent if n >=2

possible solution
•  Delete loop input dependence or (preferably) add n>=2 to info + re-analyze. work is

now PRIVATE and i loop can execute in parallel

20

Remove Data Dependences (cont.)
 S1 read*,(work(k),k=1,10),(n(k),k=1,10)
 do i=1,10
 do j=1,n(i)
 S2 work(j)=j
 enddo
 S3 b(i)=b(i)+work(2)
 enddo
analysis
•  Now n is an array – additional true dependence of work carried by i loop S2 → S3
•  i loop appears to be inherently serial

user inspection
•  Examine true dependence first, others only important if it can be removed
•  Loop carried true dependence non-existent if all n(1:10) >= 2

possible solution
•  Delete loop carried true dependence followed by loop input dependence (as before) or

just add n(1:10) >= 2 to info + re-analyze
•  i loop is now parallel and work is PRIVATE

21

Remove Data Dependences (cont.)
 do k=1,d(3)
 do j=1,d(2)
 do i=1,d(1)
S1 y1(j,i)=. . .
 enddo
 enddo
S2 call cfftz(y1, . . .)
 do j=1,d(2)
 do i=1,d(1)
S3 . . . = y1(j,i)
 enddo
analysis
•  k loop is apparently serial since y1 is assigned in S1 and S2 and is used in S2 and S3 i.e.

true dependence S2 → S2

user inspection
•  Examine true dependence first, others only important if it can be removed.
•  Examine loop Input/Output dependence

possible solution
•  If it is known that there are no assignments of y1 before S1 then we can safely remove

the loop carried true dependences and Input/Output dependences for y1 making it
PRIVATE

22

Remove Data Dependences (cont.)

•  [DeLoop]
–  make variables shared → delete loop-carried dependences

•  [Privatize]
–  make variables private → delete loop-carried True/Anti

dependences and Input/Output True dependences

23

Remove Data Dependences (cont.)

•  [Privatize] continued
–  It is possible to make variables firstprivate or lastprivate → select
“Remove Output (>) or Input (<) dependences”

Caution! User can improve performance but also can introduce mistakes

24

Further Optimization

•  User enforced loop types
–  overwrite a default

•  for I/O loops
•  concerning granularity

–  use the Loop Type window

•  The “userloop.par” file
–  User defined loop types are

saved to this file, read back
automatically from the file

–  A different filename may be specified via the environment variable
CAPO_USERLOOP

25

Parameters to Control the CAPO Execution

•  Setting dialog box
–  set most parameters

•  Environment variables
–  GUI correspondence

•  CAPO_LOGINFO
•  ...

–  no GUI correspondence
•  CAPO_USERLOOP
•  ...

if you are not sure

26

Browsing Parallel Regions

•  With the Parallel Regions browser

27

Browsing Parallel Regions (cont.)

•  Connection to the WhyDirectives window
–  list of variables and their
 types
–  indication of the
 end-of-loop
 synchronization

•  No direct modification
to regions

28

Hotlinks

•  Quick access to other functions
•  Menus from pressing

the right mouse button
–  linked with a loop
–  linked with a variable
–  linked with a routine
–  linked with a textline

•  Example
–  bring up the DepGraph window

for the selected loop

29

Command Interface for the Batch Mode

•  Provide access to the functionality of GUI components
without starting the GUI

•  Commands usually recorded to a command file by
 capo –logfile capo_run.cmd

•  Played back [in a batch mode] with
 capo [-batch] capo_run.cmd

•  Commands in the command interface are given in the CAPO
User Manual A4

30

Hybrid Parallelization

•  Existing message passing codes
–  Use CAPO to insert OpenMP directives

•  Two-step process
–  First: ParaWise to generate the message-passing code
–  Second: CAPO to insert OpenMP directives

•  Issues
–  No communication routines allowed inside a parallel region
–  The partitioned dimension is not used for OMP loop level

parallelization, but it is possible to enforce the choice
•  In the Setting Box, check “Use Partitioned Loop”

•  See an example in the CAPO tutorial notes

31

Fortran 90/95 Codes

•  In the beta stage
•  Main feature – handling array syntax, FORALL loop, WHERE

construct
–  convert to a regular DO loop
–  use “OMP WORKSHARE” (not yet supported)
–  do nothing, let a compiler work it out

 flux(2,2:nx-1,2:ny-1,2:nz)=tz3*(du2(2:nx-1,2:ny-1,2:nz) &
 & -du2(2:nx-1,2:ny-1,1:nz-1))

 do ARRAY_VAR3=2,nz
 flux(2,1:nx,2:ny-1,ARRAY_VAR3)=tz3* &
 & (du2(2:nx-1,2:ny-1,ARRAY_VAR3) &
 & -du2(2:nx-1,2:ny-1,ARRAY_VAR3-1))
 end do

converted to

32

Fortran 90/95 Codes (cont.)

•  Control of the array syntax conversion
–  done automatically
–  user can overwrite:

select an index dimension for conversion

